Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.3.3 - English

Change language to:
Français - 日本語 - Português

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab help >> Signal Processing > fft

fft

fast Fourier transform.

ifft

fast Fourier transform.

Calling Sequence

x=fft(a ,-1) or x=fft(a)
x=fft(a,1) or x=ifft(a)
x=fft(a,-1,dim,incr)
x=fft(a,1,dim,incr)

Arguments

x

real or complex vector or real or complex matrix (2-dim fft)

a

real or complex vector or real or complex matrix (2-dim fft).

dim

positive integer

incr

positive integer

Description

Short syntax
direct

x=fft(a,-1) or x=fft(a) gives a direct transform.

single variate

If a is a vector a single variate direct FFT is computed that is:

(the -1 argument refers to the sign of the exponent..., NOT to "inverse"),

multivariate

If a is a matrix or or a multidimensionnal array a multivariate direct FFT is performed.

inverse

a=fft(x,1) or a=ifft(x)performs the inverse transform normalized by 1/n.

single variate

If a is a vector a single variate inverse FFT is computed

multivariate

If a is a matrix or or a multidimensionnal array a multivariate inverse FFT is performed.

Long syntax for multidimensional FFT

x=fft(a,-1,dim,incr) allows to perform an multidimensional fft.

If a is a real or complex vector implicitly indexed by j1,j2,..,jp i.e. a(j1,j2,..,jp) where j1 lies in 1:dim(1), j2 in 1:dim(2),... one gets a p-variate FFT by calling p times fft as follows

incrk=1; 
x=a;
for k=1:p 
  x=fft(x ,-1,dim(k),incrk)
  incrk=incrk*dim(k) 
end

where dimk is the dimension of the current variable w.r.t which one is integrating and incrk is the increment which separates two successive jk elements in a.

In particular,if a is an mxn matrix, x=fft(a,-1) is equivalent to the two instructions:

a1=fft(a,-1,m,1);
x=fft(a1,-1,n,m);

Algorithms

If the fftw module has been loaded into Scilab this function uses that library (http://www.fftw.org/). On the other case the fft function is based on the Fortran routines fft842.f (Cooley-Tukey algorithm for vectors of size n=2^m) and dfftbi.f (for other sizes) .

Examples

//Frequency components of a signal
//----------------------------------
// build a noides signal sampled at 1000hz  containing to pure frequencies 
// at 50 and 70 Hz
sample_rate=1000;
t = 0:1/sample_rate:0.6;
N=size(t,'*'); //number of samples
s=sin(2*%pi*50*t)+sin(2*%pi*70*t+%pi/4)+grand(1,N,'nor',0,1);
  
y=fft(s);
//the fft response is symmetric we retain only the first N/2 points
f=sample_rate*(0:(N/2))/N; //associated frequency vector
n=size(f,'*')
clf()
plot(f,abs(y(1:n)))
//Using explicit formula for  discrete Fourier transform
//------------------------------------------------
function xf=DFT(x, flag);
  n=size(x,'*');
  //Compute the n by n Fourier matrix
  if flag==1 then,//backward transformation
    am=exp(2*%pi*%i*(0:n-1)'*(0:n-1)/n);
  else //forward transformation
    am=exp(-2*%pi*%i*(0:n-1)'*(0:n-1)/n);
  end
  xf=am*matrix(x,n,1);//dft
  xf=matrix(xf,size(x));//reshape
  if flag==1 then,xf=xf/n;end
endfunction

//Comparison with the fast Fourier algorithm
a=rand(1,1000);
norm(DFT(a,1) - fft(a,1))
norm(DFT(a,-1) - fft(a,-1)) 

timer();DFT(a,-1);timer()
timer();fft(a,-1);timer()

See Also

  • corr — correlation, covariance
  • fftw — Fast fourier transform based on the fftw library
<< ffilt Signal Processing fft2 >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Oct 05 12:09:56 CEST 2011