stabil
stabilization
Syntax
F = stabil(A, B, alfa) K = stabil(Sys, alfa, beta)
Arguments
- A
- square real matrix ( - nx x nx)
- B
- real matrix ( - nx x nu)
- alfa, beta
- real or complex vector (in conjugate pairs) or real number. 
- F
- real matrix ( - nx x nu)
- Sys
- linear system ( - syslinlist) (- minputs,- poutputs).
- K
- linear system ( - pinputs,- moutputs)
Description
F=stabil(A,B,alfa) returns a gain matrix F such that
            A+B*F is stable if pair (A,B) is stabilizable.
            Assignable poles are set to alfa(1),alfa(2),....
            If (A,B) is not stabilizable a warning is given
            and assignable poles are set to alfa(1),alfa(2),....
            If alfa is a number all eigenvalues are set to this
            alfa (default value is alfa=-1).
K=stabil(Sys,alfa,beta) returns K, a compensator for Sys
            such that (A,B)-controllable eigenvalues are set to
            alfa and (C,A)-observable eigenvalues are set to beta.
All assignable closed loop poles (which are given by the
            eigenvalues of Aclosed=h_cl(Sys,K) are set to alfa(i)'s
            and beta(j)'s.
Examples
// Gain: Sys=ssrand(0,2,5,list('st',2,3,3)); A=Sys('A');B=Sys('B');F=stabil(A,B); spec(A) //2 controllable modes 2 unstable uncontrollable modes //and one stable uncontrollable mode spec(A+B*F) //the two controllable modes are set to -1. // Compensator: Sys=ssrand(3,2,5,list('st',2,3,3)); //3 outputs, 2 inputs, 5 states //2 controllables modes, 3 controllable or stabilizable modes. K=stabil(Sys,-2,-3); //Compensator for Sys. spec(Sys('A')) spec(h_cl(Sys,K)) //K Stabilizes what can be stabilized.
See also
| Report an issue | ||
| << ppol | Pole Placement | ddp >> |