ss2tf

conversion from state-space to transfer function

Syntax

```h = ss2tf(sl)
h = ss2tf(sl,"b")
h = ss2tf(sl,rmax)
[Ds, NUM, chi] = ss2tf(..)```

Arguments

sl

linear system (`syslin` list)

h

transfer matrix

Description

Called with three outputs `[Ds,NUM,chi]=ss2tf(sl)` returns the numerator polynomial matrix `NUM`, the characteristic polynomial `chi` and the polynomial part `Ds` separately i.e.:

`h = NUM/chi + Ds`

Method:

One uses the characteristic polynomial and `det(A+Eij)=det(A)+C(i,j)` where `C` is the adjugate matrix of `A`.

With `rmax` or `"b"` argument uses a block diagonalization of sl.A matrix and applies "Leverrier" algorithm on blocks. If given, `rmax` controls the conditioning (see bdiag).

Examples

```s=poly(0,'s');
h=[1,1/s;1/(s^2+1),s/(s^2-2)]
sl=tf2ss(h);
h=clean(ss2tf(sl))
[Ds,NUM,chi]=ss2tf(sl)```

See also

• tf2ss — transfer to state-space
• syslin — linear system definition
• nlev — Leverrier's algorithm
• glever — inverse of matrix pencil
 Report an issue << ss2ss Linear System Representation ss2zp >>

 Copyright (c) 2022-2024 (Dassault Systèmes)Copyright (c) 2017-2022 (ESI Group)Copyright (c) 2011-2017 (Scilab Enterprises)Copyright (c) 1989-2012 (INRIA)Copyright (c) 1989-2007 (ENPC)with contributors Last updated:Mon Jun 17 17:49:16 CEST 2024