modulo
remainder modulo m with the sign of the left operand, or of a polynomial division
pmodulo
positive euclidian remainder modulo m
Syntax
i = modulo(n,m)
i = pmodulo(n,m)
Arguments
- m, n
- Scalar, vector, matrix or hypermatrix of encoded integers, reals, or polynomials with real coefficients. - mand- nmust have the same type. If they are of integer type, they may be of distinct encoding length (for instance int8 and int16). If none of them is scalar, they must have the same sizes.
- i
- Scalar, vector, matrix or hypermatrix of - n's type (and inttype).- itakes the sizes of the bigger- mor- n. For polynomials, when all remainders in the array For polynomials, when all remainders in the array- iare constant (degree==0),- iis of type 1 (numbers) instead of 2 (constant polynomials).
Description
modulo() computes i = n (modulo m)
            i.e. remainder of n divided by m.
For polynomials, pdiv() is called.
For numbers,
- modulo()computes- i = n - m .* int (n ./ m). The result is negative (or null) when- nis negative, and is positive otherwise.
- pmodulo()computes- i = n - |m| .* floor (n ./ |m|). The result is always positive or null.
|  | If  mcontains at least one 0 value,modulo(x,m)andpmodulo(x,m)will perform a division by zero.
                Ifmis of real type, this exception will be processed according
                to theieee()mode.
                For encoded integers, it will always yield an error. | 
Examples
n = [1,2,10,15]; m = [2,2,3,5]; modulo(n,m) modulo(-3, 9) modulo(10, -4) pmodulo(-3, 9) pmodulo(10, -6) pmodulo(-10, -6) // Encoded integers modulo( int8(-13), int16(-7)) pmodulo(int8(-13), int16(-7)) modulo( int8(-13), int16([-7 5])) pmodulo(int8(-13), int16([-7 5])) modulo( int8([-13 8]), int16(-7)) pmodulo(int8([-13 8]), int16(-7)) modulo( int8([-13 8]), int16([-7 5])) pmodulo(int8([-13 8]), int16([-7 5])) // Hypermatrices m = grand(2,2,2,"uin",-100,100) n = grand(2,2,2,"uin",-10 ,10); n(n==0) = 1 modulo(m, 5) pmodulo(m,5) modulo(51, n) pmodulo(51,n) modulo(m, n) pmodulo(m,n) // Polynomials modulo( %z^2+1, %z) pmodulo(%z^2+1, %z)
See also
History
| Version | Description | 
| 5.5.0 | Extension to encoded integers and to hypermatrices of encoded integers or reals. | 
| 6.0.2 | Extension to hypermatrices of polynomials. | 
| Report an issue | ||
| << isequal | Elementary Functions | ndims >> |