copfac
right coprime factorization of continuous time dynamical systems
Syntax
[N, M, XT, YT] = copfac(G) [N, M, XT, YT] = copfac(G, polf, polc, tol)
Arguments
- G
a continuous-time linear dynamical system.
- polf, polc
respectively the poles of
XTandYTand the poles ofnandM(default values =-1).- tol
real threshold for detecting stable poles (default value
100*%eps)- N,M,XT,YT
continuous-time linear dynamical systems.
Description
[N,M,XT,YT]=copfac(G,[polf,polc,[tol]]) returns a right coprime factorization of G.
G= N*M^-1 where N and M are stable, proper and right coprime.
(i.e. [N M] left-invertible with stability)
XT and YT satisfy:
[XT -YT].[M N]' = eye (Bezout identity)
G is assumed stabilizable and detectable.
See also
History
| Version | Description |
| 5.4.0 | Sl is now checked for continuous time linear dynamical system.
This modification has been introduced by this commit |
| Report an issue | ||
| << colinout | Linear System Factorization | dcf >> |